Each of 3,323 metabolic innovations in the evolution ofE. coliarose through the horizontal transfer of a single DNA segment

Author:

Pang Tin Yau,Lercher Martin J.ORCID

Abstract

Even closely related prokaryotes often show an astounding diversity in their ability to grow in different nutritional environments. It has been hypothesized that complex metabolic adaptations—those requiring the independent acquisition of multiple new genes—can evolve via selectively neutral intermediates. However, it is unclear whether this neutral exploration of phenotype space occurs in nature, or what fraction of metabolic adaptations is indeed complex. Here, we reconstruct metabolic models for the ancestors of a phylogeny of 53Escherichia colistrains, linking genotypes to phenotypes on a genome-wide, macroevolutionary scale. Based on the ancestral and extant metabolic models, we identify 3,323 phenotypic innovations in the history of theE. coliclade that arose through changes in accessory genome content. Of these innovations, 1,998 allow growth in previously inaccessible environments, while 1,325 increase biomass yield. Strikingly, every observed innovation arose through the horizontal acquisition of a single DNA segment less than 30 kb long. Although we found no evidence for the contribution of selectively neutral processes, 10.6% of metabolic innovations were facilitated by horizontal gene transfers on earlier phylogenetic branches, consistent with a stepwise adaptation to successive environments. Ninety-eight percent of metabolic phenotypes accessible to the combinedE. colipangenome can be bestowed on any individual strain by transferring a single DNA segment from one of the extant strains. These results demonstrate an amazing ability of theE. colilineage to adapt to novel environments through single horizontal gene transfers (followed by regulatory adaptations), an ability likely mirrored in other clades of generalist bacteria.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3