Abstract
A subset of patients with metastatic melanoma have sustained remissions following treatment with immune checkpoint inhibitors. However, analyses of pretreatment tumor biopsies for markers predictive of response, including PD-1 ligand (PD-L1) expression and mutational burden, are insufficiently precise to guide treatment selection, and clinical radiographic evidence of response on therapy may be delayed, leading to some patients receiving potentially ineffective but toxic therapy. Here, we developed a molecular signature of melanoma circulating tumor cells (CTCs) to quantify early tumor response using blood-based monitoring. A quantitative 19-gene digital RNA signature (CTC score) applied to microfluidically enriched CTCs robustly distinguishes melanoma cells, within a background of blood cells in reconstituted and in patient-derived (n = 42) blood specimens. In a prospective cohort of 49 patients treated with immune checkpoint inhibitors, a decrease in CTC score within 7 weeks of therapy correlates with marked improvement in progression-free survival [hazard ratio (HR), 0.17; P = 0.008] and overall survival (HR, 0.12; P = 0.04). Thus, digital quantitation of melanoma CTC-derived transcripts enables serial noninvasive monitoring of tumor burden, supporting the rational application of immune checkpoint inhibition therapies.
Funder
HHS | National Institutes of Health
Howard Hughes Medical Institute
National Foundation for Cancer Research
National Science Foundation
U.S. Department of Defense
Prostate Cancer Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献