Ion dissolution mechanism and kinetics at kink sites on NaCl surfaces

Author:

Joswiak Mark N.ORCID,Doherty Michael F.,Peters Baron

Abstract

Desolvation barriers are present for solute–solvent exchange events, such as ligand binding to an enzyme active site, during protein folding, and at battery electrodes. For solution-grown crystals, desolvation at kink sites can be the rate-limiting step for growth. However, desolvation and the associated kinetic barriers are poorly understood. In this work, we use rare-event simulation techniques to investigate attachment/detachment events at kink sites of a NaCl crystal in water. We elucidate the desolvation mechanism and present an optimized reaction coordinate, which involves one solute collective variable and one solvent collective variable. The attachment/detachment pathways for Na+ and Cl are qualitatively similar, with quantitative differences that we attribute to different ion sizes and solvent coordination. The attachment barriers primarily result from kink site desolvation, while detachment barriers largely result from breaking ion–crystal bonds. We compute ion detachment rates from kink sites and compare with results from an independent study. We anticipate that the reaction coordinate and desolvation mechanism identified in this work may be applicable to other alkali halides.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3