Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence

Author:

Vavrek Jayson R.,Henderson Brian S.,Danagoulian Areg

Abstract

Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618–8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal from the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy “genuine” and “hoax” objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.

Funder

DOE | National Nuclear Security Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference28 articles.

1. Drell S Callan C Cornwall J Dyson F Eardley D (1993) Verification of Dismantlement of Nuclear Warheads and Controls on Nuclear Materials (MITRE Corp JASON Program Office, McLean, VA), Technical Report JSR-92–331.

2. Comley C Comley M Eggins P (2000) Confidence, Security and Verification: The Challenge of Global Nuclear Weapons Arms Control (United Kingdom Ministry of Defence, Whitehall, London), Technical Report AWE/TR/2000/001.

3. Spears D (2001) Technology R&D for Arms Control: Arms Control and Nonproliferation Technologies (US Department of Energy, National Nuclear Security Administration, Defense Nuclear Nonproliferation Programs, Washington, DC).

4. Verification on the road to zero: Issues for nuclear warhead dismantlement;Fuller;Arms Control Today,2010

5. Supporting technology for chain of custody of nuclear weapons and materials throughout the dismantlement and disposition processes;Bunch;Sci Global Secur,2014

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3