Topological localization in out-of-equilibrium dissipative systems

Author:

Dasbiswas Kinjal,Mandadapu Kranthi K.,Vaikuntanathan Suriyanarayanan

Abstract

In this paper, we report that notions of topological protection can be applied to stationary configurations that are driven far from equilibrium by active, dissipative processes. We consider two physically disparate systems: stochastic networks governed by microscopic single-particle dynamics, and collections of driven interacting particles described by coarse-grained hydrodynamic theory. We derive our results by mapping to well-known electronic models and exploiting the resulting correspondence between a bulk topological number and the spectrum of dissipative modes localized at the boundary. For the Markov networks, we report a general procedure to uncover the topological properties in terms of the transition rates. For the active fluid on a substrate, we introduce a topological interpretation of fluid dissipative modes at the edge. In both cases, the presence of dissipative couplings to the environment that break time-reversal symmetry are crucial to ensuring topological protection. These examples constitute proof of principle that notions of topological protection do indeed extend to dissipative processes operating out of equilibrium. Such topologically robust boundary modes have implications for both biological and synthetic systems.

Funder

National Science Foundation

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3