Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion

Author:

Corey Robin A.,Pyle EuanORCID,Allen William J.,Watkins Daniel W.,Casiraghi Marina,Miroux BrunoORCID,Arechaga Ignacio,Politis Argyris,Collinson Ian

Abstract

The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA–SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein–lipid interactions.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Wellcome

Institut National de la Santé et de la Recherche Médicale

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3