Toward engineeringE. coliwith an autoregulatory system for lignin valorization

Author:

Wu Weihua,Liu Fang,Singh Seema

Abstract

Efficient lignin valorization could add more than 10-fold the value gained from burning it for energy and is critical for economic viability of future biorefineries. However, lignin-derived aromatics from biomass pretreatment are known to be potent fermentation inhibitors in microbial production of fuels and other value-added chemicals. In addition, isopropyl-β-d-1-thiogalactopyranoside and other inducers are routinely added into fermentation broth to induce the expression of pathway enzymes, which further adds to the overall process cost. An autoregulatory system that can diminish the aromatics’ toxicity as well as be substrate-inducible can be the key for successful integration of lignin valorization into future lignocellulosic biorefineries. Toward that goal, in this study an autoregulatory system is demonstrated that alleviates the toxicity issue and eliminates the cost of an external inducer. Specifically, this system is composed of a catechol biosynthesis pathway coexpressed with an active aromatic transporter CouP under induction by a vanillin self-inducible promoter, ADH7, to effectively convert the lignin-derived aromatics into value-added chemicals usingEscherichia colias a host. The constructed autoregulatory system can efficiently transport vanillin across the cell membrane and convert it to catechol. Compared with the system without CouP expression, the expression of catechol biosynthesis pathway with transporter CouP significantly improved the catechol yields about 30% and 40% under promoter pTrc and ADH7, respectively. This study demonstrated an aromatic-induced autoregulatory system that enabled conversion of lignin-derived aromatics into catechol without the addition of any costly, external inducers, providing a promising and economically viable route for lignin valorization.

Funder

DOE | LDRD | Sandia National Laboratories

DOE | SC | Biological and Environmental Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3