Author:
Gaertner Hubert,Cerini Fabrice,Escola Jean-Michel,Kuenzi Gabriel,Melotti Astrid,Offord Robin,Rossitto-Borlat Irène,Nedellec Rebecca,Salkowitz Janelle,Gorochov Guy,Mosier Donald,Hartley Oliver
Abstract
New prevention strategies for use in developing countries are urgently needed to curb the worldwide HIV/AIDS epidemic. The N-terminally modified chemokine PSC-RANTES is a highly potent entry inhibitor against R5-tropic HIV-1 strains, with an inhibitory mechanism involving long-term intracellular sequestration of the HIV coreceptor, CCR5. PSC-RANTES is fully protective when applied topically in a macaque model of vaginal HIV transmission, but it has 2 potential disadvantages related to further development: the requirement for chemical synthesis adds to production costs, and its strong CCR5 agonist activity might induce local inflammation. It would thus be preferable to find a recombinant analogue that retained the high potency of PSC-RANTES but lacked its agonist activity. Using a strategy based on phage display, we set out to discover PSC-RANTES analogs that contain only natural amino acids. We sought molecules that retain the potency and inhibitory mechanism of PSC-RANTES, while trying to reduce CCR5 signaling to as low a level as possible. We identified 3 analogues, all of which exhibit in vitro potency against HIV-1 comparable to that of PSC-RANTES. The first, 6P4-RANTES, resembles PSC-RANTES in that it is a strong agonist that induces prolonged intracellular sequestration of CCR5. The second, 5P12-RANTES, has no detectable G protein-linked signaling activity and does not bring about receptor sequestration. The third, 5P14-RANTES, induces significant levels of CCR5 internalization without detectable G protein-linked signaling activity. These 3 molecules represent promising candidates for further development as topical HIV prevention strategies.
Publisher
Proceedings of the National Academy of Sciences