Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2production

Author:

Chu ChihengORCID,Zhu Qianhong,Pan Zhenhua,Gupta SrishtiORCID,Huang Dahong,Du Yonghua,Weon Seunghyun,Wu Yueshen,Muhich Christopher,Stavitski EliORCID,Domen Kazunari,Kim Jae-Hong

Abstract

Redox cocatalysts play crucial roles in photosynthetic reactions, yet simultaneous loading of oxidative and reductive cocatalysts often leads to enhanced charge recombination that is detrimental to photosynthesis. This study introduces an approach to simultaneously load two redox cocatalysts, atomically dispersed cobalt for improving oxidation activity and anthraquinone for improving reduction selectivity, onto graphitic carbon nitride (C3N4) nanosheets for photocatalytic H2O2production. Spatial separation of oxidative and reductive cocatalysts was achieved on a two-dimensional (2D) photocatalyst, by coordinating cobalt single atom above the void center of C3N4and anchoring anthraquinone at the edges of C3N4nanosheets. Such spatial separation, experimentally confirmed and computationally simulated, was found to be critical for enhancing surface charge separation and achieving efficient H2O2production. This center/edge strategy for spatial separation of cocatalysts may be applied on other 2D photocatalysts that are increasingly studied in photosynthetic reactions.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3