Author:
Dobson David P.,Lindsay-Scott Alexander,Hunt Simon A.,Bailey Edward,Wood Ian G.,Brodholt John P.,Vocadlo Lidunka,Wheeler John
Abstract
The lowermost portion of Earth’s mantle (D″) above the core−mantle boundary shows anomalous seismic features, such as strong seismic anisotropy, related to the properties of the main mineral MgSiO3postperovskite. But, after over a decade of investigations, the seismic observations still cannot be explained simply by flow models which assume dislocation creep in postperovskite. We have investigated the chemical diffusivity of perovskite and postperovskite phases by experiment and ab initio simulation, and derive equations for the observed anisotropic diffusion creep. There is excellent agreement between experiments and simulations for both phases in all of the chemical systems studied. Single-crystal diffusivity in postperovskite displays at least 3 orders of magnitude of anisotropy by experiment and simulation (Da= 1,000Db;Db≈Dc) in zinc fluoride, and an even more extreme anisotropy is predicted (Da= 10,000Dc;Dc= 10,000Db) in the natural MgSiO3system. Anisotropic chemical diffusivity results in anisotropic diffusion creep, texture generation, and a strain-weakening rheology. The results for MgSiO3postperovskite strongly imply that regions within the D″ region of Earth dominated by postperovskite will 1) be substantially weaker than regions dominated by perovskite and 2) develop a strain-induced crystallographic-preferred orientation with strain-weakening rheology. This leads to strain localization and the possibility to bring regions with significantly varying textures into close proximity by strain on narrow shear zones. Anisotropic diffusion creep therefore provides an attractive alternative explanation for the complexity in observed seismic anisotropy and the rapid lateral changes in seismic velocities in D″.
Funder
RCUK | Natural Environment Research Council
Alexander von Humboldt-Stiftung
Publisher
Proceedings of the National Academy of Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献