Multiple agents managing a harmful species population should either work together to control it or split their duties to eradicate it

Author:

Lampert AdamORCID

Abstract

The management of harmful species, including invasive species, pests, parasites, and diseases, is a major global challenge. Harmful species cause severe damage to ecosystems, biodiversity, agriculture, and human health. In particular, managing harmful species often requires cooperation among multiple agents, such as landowners, agencies, and countries. Each agent may have incentives to contribute less to the treatment, leaving more work for other agents, which may result in inefficient treatment. A central question is, therefore, how should a policymaker allocate treatment duties among the agents? Specifically, should the agents work together in the same area, or should each agent work only in a smaller area designated just for her/him? We consider a dynamic game-theoretic model, where a Nash equilibrium corresponds to a possible set of contributions that the agents could adopt over time. In turn, the allocation by the policymaker determines which of the Nash equilibria could be adopted, which allows us to compare the outcome of various allocations. Our results show that fewer agents can abate the harmful species population faster, but more agents can better control the population to keep its density lower. We prove this result in a general theorem and demonstrate it numerically for two case studies. Therefore, following an outbreak, the better policy would be to split and assign one or a few agents to treat the species in a given location, but if controlling the harmful species population at some low density is needed, the agents should work together in all of the locations.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3