Solvent fluctuations in the solvation shell determine the activation barrier for crystal growth rates

Author:

Dighe Anish V.,Singh Meenesh R.ORCID

Abstract

Solution crystallization is a common technique to grow advanced, functional crystalline materials. Supersaturation, temperature, and solvent composition are known to influence the growth rates and thereby properties of crystalline materials; however, a satisfactory explanation of how these factors affect the activation barrier for growth rates has not been developed. We report here that these effects can be attributed to a previously unrecognized consequence of solvent fluctuations in the solvation shell of solute molecules attaching to the crystal surface. With increasing supersaturation, the average hydration number of the glutamic acid molecule decreases and can reach an asymptotic limit corresponding to the number of adsorption sites on the molecule. The hydration number of the glutamic acid molecule also fluctuates due to the rapid exchange of solvent in the solvation shell and local variation in the supersaturation. These rapid fluctuations allow quasi-equilibrium between fully solvated and partially desolvated states of molecules, which can be used to construct a double-well potential and thereby to identify the transition state and the required activation barrier. The partially desolvated molecules are not stable and can attach spontaneously to the crystal surface. The activation barrier versus hydration number follows the Evans–Polanyi relation. The predicted absolute growth rates of the α-glutamic acid crystal at lower supersaturations are in reasonable agreement with the experimental observations.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference43 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3