Quantitative detection of iodine in the stratosphere

Author:

Koenig Theodore K.ORCID,Baidar SunilORCID,Campuzano-Jost PedroORCID,Cuevas Carlos A.ORCID,Dix Barbara,Fernandez Rafael P.ORCID,Guo Hongyu,Hall Samuel R.ORCID,Kinnison DouglasORCID,Nault Benjamin A.,Ullmann KirkORCID,Jimenez Jose L.,Saiz-Lopez AlfonsoORCID,Volkamer RainerORCID

Abstract

Oceanic emissions of iodine destroy ozone, modify oxidative capacity, and can form new particles in the troposphere. However, the impact of iodine in the stratosphere is highly uncertain due to the lack of previous quantitative measurements. Here, we report quantitative measurements of iodine monoxide radicals and particulate iodine (Iy,part) from aircraft in the stratosphere. These measurements support that 0.77 ± 0.10 parts per trillion by volume (pptv) total inorganic iodine (Iy) is injected to the stratosphere. These high Iy amounts are indicative of active iodine recycling on ice in the upper troposphere (UT), support the upper end of recent Iy estimates (0 to 0.8 pptv) by the World Meteorological Organization, and are incompatible with zero stratospheric iodine injection. Gas-phase iodine (Iy,gas) in the UT (0.67 ± 0.09 pptv) converts to Iy,part sharply near the tropopause. In the stratosphere, IO radicals remain detectable (0.06 ± 0.03 pptv), indicating persistent Iy,part recycling back to Iy,gas as a result of active multiphase chemistry. At the observed levels, iodine is responsible for 32% of the halogen-induced ozone loss (bromine 40%, chlorine 28%), due primarily to previously unconsidered heterogeneous chemistry. Anthropogenic (pollution) ozone has increased iodine emissions since preindustrial times (ca. factor of 3 since 1950) and could be partly responsible for the continued decrease of ozone in the lower stratosphere. Increasing iodine emissions have implications for ozone radiative forcing and possibly new particle formation near the tropopause.

Funder

National Science Foundation

National Aeronautics and Space Administration

EC | Horizon 2020

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3