TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression

Author:

Herzog Josiah J.,Xu WeijinORCID,Deshpande Mugdha,Rahman Reazur,Suib Hannah,Rodal Avital A.ORCID,Rosbash Michael,Paradis Suzanne

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative diseases that present with similar TDP-43 pathology in patient tissue. TDP-43 is an RNA-binding protein which forms aggregates in neurons of ALS and FTD patients as well as in a subset of patients diagnosed with other neurodegenerative diseases. Despite our understanding that TDP-43 is essential for many aspects of RNA metabolism, it remains obscure how TDP-43 dysfunction contributes to neurodegeneration. Interestingly, altered neuronal dendritic morphology is a common theme among several neurological disorders and is thought to precede neurodegeneration. We previously found that both TDP-43 overexpression (OE) and knockdown (KD) result in reduced dendritic branching of cortical neurons. In this study, we used TRIBE (targets of RNA-binding proteins identified by editing) as an approach to identify signaling pathways that regulate dendritic branching downstream of TDP-43. We found that TDP-43 RNA targets are enriched for pathways that signal to the CREB transcription factor. We further found that TDP-43 dysfunction inhibits CREB activation and CREB transcriptional output, and restoring CREB signaling rescues defects in dendritic branching. Finally, we demonstrate, using RNA sequencing, that TDP-43 OE and KD cause similar changes in the abundance of specific messenger RNAs, consistent with their ability to produce similar morphological defects. Our data therefore provide a mechanism by which TDP-43 dysfunction interferes with dendritic branching, and may define pathways for therapeutic intervention in neurodegenerative diseases.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

HHS | NIH | National Institute on Drug Abuse

Blazeman Foundation for ALS

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3