Author:
Bulock Chelsea R.,Xing Xuanxuan,Shcherbakova Polina V.
Abstract
During eukaryotic replication, DNA polymerases ε (Polε) and δ (Polδ) synthesize the leading and lagging strands, respectively. In a long-known contradiction to this model, defects in the fidelity of Polε have a much weaker impact on mutagenesis than analogous Polδ defects. It has been previously proposed that Polδ contributes more to mutation avoidance because it proofreads mismatches created by Polε in addition to its own errors. However, direct evidence for this model was missing. We show that, in yeast, the mutation rate increases synergistically when a Polε nucleotide selectivity defect is combined with a Polδ proofreading defect, demonstrating extrinsic proofreading of Polε errors by Polδ. In contrast, combining Polδ nucleotide selectivity and Polε proofreading defects produces no synergy, indicating that Polε cannot correct errors made by Polδ. We further show that Polδ can remove errors made by exonuclease-deficient Polε in vitro. These findings illustrate the complexity of the one-strand–one-polymerase model where synthesis appears to be largely divided, but Polδ proofreading operates on both strands.
Funder
HHS | NIH | National Institute of Environmental Health Sciences
HHS | NIH | National Cancer Institute
Nebraska Department of Health and Human Services
University of Nebraska Medical Center
Publisher
Proceedings of the National Academy of Sciences
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献