Engineered biomimetic nanoparticle for dual targeting of the cancer stem-like cell population in sonic hedgehog medulloblastoma

Author:

Kim JinhwanORCID,Dey Abhinav,Malhotra Anshu,Liu Jingbo,Ahn Song IhORCID,Sei Yoshitaka J.,Kenney Anna M.ORCID,MacDonald Tobey J.ORCID,Kim YongTaeORCID

Abstract

The sonic hedgehog subtype of medulloblastoma (SHH MB) is associated with treatment failure and poor outcome. Current strategies utilizing whole brain radiation therapy result in deleterious off-target effects on the normal developing childhood brain. Most conventional chemotherapies remain limited by ineffective blood–brain barrier (BBB) penetrance. These challenges signify an unmet need for drug carriers that can cross the BBB and deliver drugs to targeted sites with high drug-loading efficiency and long-term stability. We herein leverage the enhanced stability and targeting ability of engineered high-density lipoprotein-mimetic nanoparticles (eHNPs) to cross the BBB and deliver a SHH inhibitor effectively to the cancer stem-like cell population in SHH MB. Our microfluidic technology enabled highly reproducible production of multicomponent eHNPs incorporated with apolipoprotein A1, anti-CD15, and a SHH inhibitor (LDE225). We demonstrate the dual-targeted delivery and enhanced therapeutic effect of eHNP-A1-CD15-LDE225 via scavenger receptor class B type 1 (SR-B1) and CD15 on brain SHH MB cells in vitro, ex vivo, and in vivo. Moreover, we show that eHNP-A1 not only serves as a stable drug carrier, but also has a therapeutic effect itself through SR-B1-mediated intracellular cholesterol depletion in SHH MB cells. Through the facilitated and targeted cellular uptake of drugs and direct therapeutic role of this engineered biomimetic nanocarrier in SHH MB, our multifunctional nanoparticle provides intriguing therapeutic promise as an effective and potent nanomedicine for the treatment of SHH MB.

Funder

HHS | National Institutes of Health

Ian's Friends Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3