The protective benefits of tsunami mitigation parks and ramifications for their strategic design

Author:

Lunghino Brent,Santiago Tate Adrian F.,Mazereeuw MihoORCID,Muhari Abdul,Giraldo Francis X.,Marras Simone,Suckale JennyORCID

Abstract

Nature-based solutions are becoming an increasingly important component of sustainable coastal risk management. For particularly destructive hazards like tsunamis, natural elements like vegetation are often combined with designed elements like seawalls or dams to augment the protective benefits of each component. One example of this kind of hybrid approach is the so-called tsunami mitigation park, which combines a designed hillscape with vegetation. Despite the increasing popularity of tsunami mitigation parks, the protective benefits they provide are poorly understood and incompletely quantified. As a consequence of this lack of understanding, current designs might not maximize the protective benefits of tsunami mitigation parks. Here, we numerically model the interactions between a single row of hills with an incoming tsunami to identify the mechanisms through which the park protects the coast. We initialize the tsunami as an N wave that propagates to shore and impacts the coast directly. We find that partial reflection of the incoming wave is the most important mechanism by which hills reduce the kinetic energy that propagates onshore. The protective benefit of tsunami mitigation parks is thus comparable to that of a small wall, at least for tsunamis with amplitudes that are comparable to the hill height. We also show that hills could elevate potential damage in the immediate vicinity of the hills where flow speeds increase compared to a planar beach, suggesting the need to include a buffer zone behind the hills into a strategic park design.

Funder

DOD | United States Navy | Office of Naval Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3