Rescue of tomato spotted wilt virus entirely from complementary DNA clones

Author:

Feng Mingfeng,Cheng Ruixiang,Chen Minglong,Guo Rong,Li Luyao,Feng Zhike,Wu Jianyan,Xie Li,Hong Jian,Zhang Zhongkai,Kormelink RichardORCID,Tao XiaorongORCID

Abstract

Negative-stranded/ambisense RNA viruses (NSVs) include not only dangerous pathogens of medical importance but also serious plant pathogens of agronomic importance. Tomato spotted wilt virus (TSWV) is one of the most important plant NSVs, infecting more than 1,000 plant species, and poses major threats to global food security. The segmented negative-stranded/ambisense RNA genomes of TSWV, however, have been a major obstacle to molecular genetic manipulation. In this study, we report the complete recovery of infectious TSWV entirely from complementary DNA (cDNA) clones. First, a replication- and transcription-competent minigenome replication system was established based on 35S-driven constructs of the S(−)-genomic (g) or S(+)-antigenomic (ag) RNA template, flanked by the 5′ hammerhead and 3′ ribozyme sequence of hepatitis delta virus, a nucleocapsid (N) protein gene and codon-optimized viral RNA-dependent RNA polymerase (RdRp) gene. Next, a movement-competent minigenome replication system was developed based on M(−)-gRNA, which was able to complement cell-to-cell and systemic movement of reconstituted ribonucleoprotein complexes (RNPs) of S RNA replicon. Finally, infectious TSWV and derivatives carrying eGFP reporters were rescued in planta via simultaneous expression of full-length cDNA constructs coding for S(+)-agRNA, M(−)-gRNA, and L(+)-agRNA in which the glycoprotein gene sequence of M(−)-gRNA was optimized. Viral rescue occurred with the addition of various RNAi suppressors including P19, HcPro, and γb, but TSWV NSs interfered with the rescue of genomic RNA. This reverse genetics system for TSWV now allows detailed molecular genetic analysis of all aspects of viral infection cycle and pathogenicity.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference59 articles.

1. M. K. David , M. H. Peter , Fields Virology, (Lippincott Williams & Wilkins, ed. 6, 2013), pp. 1–2264.

2. A. Plyusnin , R. M. Elliott , The Bunyaviridae: Molecular and Cellular Biology (Caister Academic Press, 2011), pp. 1–222.

3. Tospoviruses: Diagnosis, Molecular Biology, Phylogeny, and Vector Relationships

4. Interaction between Rice stripe virus Disease-Specific Protein and Host PsbP Enhances Virus Symptoms

5. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission;Lu;PLoS Pathog.,2019

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3