Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation

Author:

Feketeová Linda,Bertier Paul,Salbaing Thibaud,Azuma Toshiyuki,Calvo Florent,Farizon Bernadette,Farizon MichelORCID,Märk Tilmann D.

Abstract

Atmospheric aerosols are one of the major factors affecting planetary climate, and the addition of anthropogenic molecules into the atmosphere is known to strongly affect cloud formation. The broad variety of compounds present in such dilute media and their specific underlying thermalization processes at the nanoscale make a complete quantitative description of atmospheric aerosol formation certainly challenging. In particular, it requires fundamental knowledge about the role of impurities in water cluster growth, a crucial step in the early stage of aerosol and cloud formation. Here, we show how a hydrophobic pyridinium ion within a water cluster drastically changes the thermalization properties, which will in turn change the corresponding propensity for water cluster growth. The combination of velocity map imaging with a recently developed mass spectrometry technique allows the direct measurement of the velocity distribution of the water molecules evaporated from excited clusters. In contrast to previous results on pure water clusters, the low-velocity part of the distributions for pyridinium-doped water clusters is composed of 2 distinct Maxwell–Boltzmann distributions, indicating out-of-equilibrium evaporation. More generally, the evaporation of water molecules from excited clusters is found to be much slower when the cluster is doped with a pyridinium ion. Therefore, the presence of a contaminant molecule in the nascent cluster changes the energy storage and disposal in the early stages of gas-to-particle conversion, thereby leading to an increased rate of formation of water clusters and consequently facilitating homogeneous nucleation at the early stages of atmospheric aerosol formation.

Funder

Agence Nationale de la Recherche

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3