Nanoscale spectroscopic origins of photoinduced tip–sample force in the midinfrared

Author:

Jahng JunghoonORCID,Potma Eric O.ORCID,Lee Eun SeongORCID

Abstract

When light illuminates the junction formed between a sharp metal tip and a sample, different mechanisms can contribute to the measured photoinduced force simultaneously. Of particular interest are the instantaneous force between the induced dipoles in the tip and in the sample, and the force related to thermal heating of the junction. A key difference between these 2 force mechanisms is their spectral behavior. The magnitude of the thermal response follows a dissipative (absorptive) Lorentzian line shape, which measures the heat exchange between light and matter, while the induced dipole response exhibits a dispersive spectrum and relates to the real part of the material polarizability. Because the 2 interactions are sometimes comparable in magnitude, the origin of the chemical selectivity in nanoscale spectroscopic imaging through force detection is often unclear. Here, we demonstrate theoretically and experimentally how the light illumination gives rise to the 2 kinds of photoinduced forces at the tip–sample junction in the midinfrared. We comprehensively address the origin of the spectroscopic forces by discussing cases where the 2 spectrally dependent forces are entwined. The analysis presented here provides a clear and quantitative interpretation of nanoscale chemical measurements of heterogeneous materials and sheds light on the nature of light–matter coupling in optomechanical force-based spectronanoscopy.

Funder

National Research Foundation of Korea

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3