Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing

Author:

Chen Xiaohong,Chen Yuxuan,Xin Huhu,Wan Tao,Ping Yuan

Abstract

We herein report an optogenetically activatable CRISPR-Cas9 nanosystem for programmable genome editing in the second near-infrared (NIR-II) optical window. The nanosystem, termed nanoCRISPR, is composed of a cationic polymer-coated Au nanorod (APC) and Cas9 plasmid driven by a heat-inducible promoter. The APC not only serves as a carrier for intracellular plasmid delivery but also can harvest external NIR-II photonic energy and convert it into local heat to induce the gene expression of the Cas9 endonuclease. Due to high transfection activity, the APC shows strong ability to induce a significant level of disruption in different genomic loci upon optogenetic activation. Moreover, the precise control of genome-editing activity can be simply programmed by finely tuning exposure time and irradiation time in vitro and in vivo and also enables editing at multiple time points, thus proving the sensitivity and inducibility of such an editing modality. The NIR-II optical feature of nanoCRISPR enables therapeutic genome editing at deep tissue, by which treatment of deep tumor and rescue of fulminant hepatic failure are demonstrated as proof-of-concept therapeutic examples. Importantly, this modality of optogenetic genome editing can significantly minimize the off-target effect of CRISPR-Cas9 in most potential off-target sites. The optogenetically activatable CRISPR-Cas9 nanosystem we have developed offers a useful tool to expand the current applications of CRISPR-Cas9, and also defines a programmable genome-editing strategy toward high precision and spatial specificity.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3