Quantitative microscopy reveals dynamics and fate of clustered IRE1α

Author:

Belyy VladislavORCID,Tran Ngoc-HanORCID,Walter PeterORCID

Abstract

The endoplasmic reticulum (ER) membrane-resident stress sensor inositol-requiring enzyme 1 (IRE1) governs the most evolutionarily conserved branch of the unfolded protein response. Upon sensing an accumulation of unfolded proteins in the ER lumen, IRE1 activates its cytoplasmic kinase and ribonuclease domains to transduce the signal. IRE1 activity correlates with its assembly into large clusters, yet the biophysical characteristics of IRE1 clusters remain poorly characterized. We combined superresolution microscopy, single-particle tracking, fluorescence recovery, and photoconversion to examine IRE1 clustering quantitatively in living human and mouse cells. Our results revealed that: 1) In contrast to qualitative impressions gleaned from microscopic images, IRE1 clusters comprise only a small fraction (∼5%) of the total IRE1 in the cell; 2) IRE1 clusters have complex topologies that display features of higher-order organization; 3) IRE1 clusters contain a diffusionally constrained core, indicating that they are not phase-separated liquid condensates; 4) IRE1 molecules in clusters remain diffusionally accessible to the free pool of IRE1 molecules in the general ER network; 5) when IRE1 clusters disappear at later time points of ER stress as IRE1 signaling attenuates, their constituent molecules are released back into the ER network and not degraded; 6) IRE1 cluster assembly and disassembly are mechanistically distinct; and 7) IRE1 clusters’ mobility is nearly independent of cluster size. Taken together, these insights define the clusters as dynamic assemblies with unique properties. The analysis tools developed for this study will be widely applicable to investigations of clustering behaviors in other signaling proteins.

Funder

HHS | NIH | National Institute of General Medical Sciences

Damon Runyon Cancer Research Foundation

Howard Hughes Medical Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3