Short solvent model for ion correlations and hydrophobic association

Author:

Gao Ang,Remsing Richard C.,Weeks John D.

Abstract

Coulomb interactions play a major role in determining the thermodynamics, structure, and dynamics of condensed-phase systems, but often present significant challenges. Computer simulations usually use periodic boundary conditions to minimize corrections from finite cell boundaries but the long range of the Coulomb interactions generates significant contributions from distant periodic images of the simulation cell, usually calculated by Ewald sum techniques. This can add significant overhead to computer simulations and hampers the development of intuitive local pictures and simple analytic theory. In this paper, we present a general framework based on local molecular field theory to accurately determine the contributions from long-ranged Coulomb interactions to the potential of mean force between ionic or apolar hydrophobic solutes in dilute aqueous solutions described by standard classical point charge water models. The simplest approximation leads to a short solvent (SS) model, with truncated solvent–solvent and solute–solvent Coulomb interactions and long-ranged but screened Coulomb interactions only between charged solutes. The SS model accurately describes the interplay between strong short-ranged solute core interactions, local hydrogen-bond configurations, and long-ranged dielectric screening of distant charges, competing effects that are difficult to capture in standard implicit solvent models.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3