Abstract
Among several reversible epigenetic changes occurring during transcriptional activation, only demethylation of histones and cytosine-phosphate-guanines (CpGs) in gene promoters and other regulatory regions by specific demethylase(s) generates reactive oxygen species (ROS), which oxidize DNA and other cellular components. Here, we show induction of oxidized bases and single-strand breaks (SSBs), but not direct double-strand breaks (DSBs), in the genome during gene activation by ligands of the nuclear receptor superfamily. We observed that these damages were preferentially repaired in promoters via the base excision repair (BER)/single-strand break repair (SSBR) pathway. Interestingly, BER/SSBR inhibition suppressed gene activation. Constitutive association of demethylases with BER/SSBR proteins in multiprotein complexes underscores the coordination of histone/DNA demethylation and genome repair during gene activation. However, ligand-independent transcriptional activation occurring during heat shock (HS) induction is associated with the generation of DSBs, the repair of which is likewise essential for the activation of HS-responsive genes. These observations suggest that the repair of distinct damages induced during diverse transcriptional activation is a universal prerequisite for transcription initiation. Because of limited investigation of demethylation-induced genome damage during transcription, this study suggests that the extent of oxidative genome damage resulting from various cellular processes is substantially underestimated.
Funder
HHS | NIH | National Cancer Institute
HHS | NIH | National Institute of General Medical Sciences
HHS | NIH | National Institute of Neurological Disorders and Stroke
Publisher
Proceedings of the National Academy of Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献