Superdiffusive transport of energy in one-dimensional metals

Author:

Bulchandani Vir B.ORCID,Karrasch Christoph,Moore Joel E.

Abstract

Metals in one spatial dimension are described at the lowest energy scales by the Luttinger liquid theory. It is well understood that this free theory, and even interacting integrable models, can support ballistic transport of conserved quantities including energy. In contrast, realistic one-dimensional metals, even without disorder, contain integrability-breaking interactions that are expected to lead to thermalization and conventional diffusive linear response. We argue that the expansion of energy when such a nonintegrable Luttinger liquid is locally heated above its ground state shows superdiffusive behavior (i.e., spreading of energy that is intermediate between diffusion and ballistic propagation), by combining an analytical anomalous diffusion model with numerical matrix-product–state calculations on a specific perturbed spinless fermion chain. Different metals will have different scaling exponents and shapes in their energy spreading, but the superdiffusive behavior is stable and should be visible in time-resolved experiments.

Funder

U.S. Department of Energy

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A power-law model for nonlinear phonon hydrodynamics;Zeitschrift für angewandte Mathematik und Physik;2024-04

2. Lévy flights as an emergent phenomenon in a spatially extended system;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10

3. Hydrodynamic relaxation of spin helices;Physical Review B;2023-08-16

4. Slow transport and bound states for spinless fermions with long-range Coulomb interactions on one-dimensional lattices;Physical Review B;2023-07-18

5. Discrete-time quantum walk dispersion control through long-range correlations;Physical Review E;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3