Uncovering the functional residues ofArabidopsisisoprenoid biosynthesis enzyme HDS

Author:

Wang Jin-Zheng,Lei Yongxing,Xiao Yanmei,He Xiang,Liang Jiubo,Jiang Jishan,Dong Shangzhi,Ke Haiyan,Leon Patricia,Zerbe Philipp,Xiao Youli,Dehesh Katayoon

Abstract

The methylerythritol phosphate (MEP) pathway is responsible for producing isoprenoids, metabolites with essential functions in the bacterial kingdom and plastid-bearing organisms including plants and Apicomplexa. Additionally, the MEP-pathway intermediate methylerythritol cyclodiphosphate (MEcPP) serves as a plastid-to-nucleus retrograde signal. A suppressor screen of the high MEcPP accumulating mutant plant (ceh1) led to the isolation of 3 revertants (designatedRceh13) resulting from independent intragenic substitutions of conserved amino acids in the penultimate MEP-pathway enzyme, hydroxymethylbutenyl diphosphate synthase (HDS). The revertants accumulate varying MEcPP levels, lower than that ofceh1, and exhibit partial or full recovery of MEcPP-mediated phenotypes, including stunted growth and induced expression of stress response genes and the corresponding metabolites. Structural modeling of HDS and ligand docking spatially position the substituted residues at the MEcPP binding pocket and cofactor binding domain of the enzyme. Complementation assays confirm the role of these residues in suppressing theceh1mutant phenotypes, albeit to different degrees. In vitro enzyme assays of wild type and HDS variants exhibit differential activities and reveal an unanticipated mismatch between enzyme kinetics and the in vivo MEcPP levels in the correspondingRcehlines. Additional analyses attribute the mismatch, in part, to the abundance of the first and rate-limiting MEP-pathway enzyme, DXS, and further suggest MEcPP as a rheostat for abundance of the upstream enzyme instrumental in fine-tuning of the pathway flux. Collectively, this study identifies critical residues of a key MEP-pathway enzyme, HDS, valuable for synthetic engineering of isoprenoids, and as potential targets for rational design of antiinfective drugs.

Funder

HHS | National Institutes of Health

University of California Institute for Mexico and the United States

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3