A unified description of hydrophilic and superhydrophobic surfaces in terms of the wetting and drying transitions of liquids

Author:

Evans Robert,Stewart Maria C.,Wilding Nigel B.

Abstract

Clarifying the factors that control the contact angle of a liquid on a solid substrate is a long-standing scientific problem pertinent across physics, chemistry, and materials science. Progress has been hampered by the lack of a comprehensive and unified understanding of the physics of wetting and drying phase transitions. Using various theoretical and simulational techniques applied to realistic fluid models, we elucidate how the character of these transitions depends sensitively on both the range of fluid–fluid and substrate–fluid interactions and the temperature. Our calculations uncover previously unrecognized classes of surface phase diagram which differ from that established for simple lattice models and often assumed to be universal. The differences relate both to the topology of the phase diagram and to the nature of the transitions, with a remarkable feature being a difference between drying and wetting transitions which persists even in the approach to the bulk critical point. Most experimental and simulational studies of liquids at a substrate belong to one of these previously unrecognized classes. We predict that while there appears to be nothing particularly special about water with regard to its wetting and drying behavior, superhydrophobic behavior should be more readily observable in experiments conducted at high temperatures than at room temperature.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3