Abstract
Photochemistry of an N2 ice and thermal reaction of the irradiated sample were studied with vacuum-ultraviolet (VUV) light from a synchrotron. Concurrent detection of infrared absorption and visible emission spectra provide evidence for the generation of energetic products N (2D) and N (2P) atoms, N2 (A) molecule and linear-N3 (l-N3) radical after excitation of icy N2 at 121.6 nm. Irradiation at 190 nm is shown to be an effective way to eliminate the l-N3 radical. After the photolysis and photoelimination of the l-N3, we initiate synthesis of l-N3 via the thermal ramping of the sample in temperature range 3.5 to 20 K. In addition, the emission from the N (2D) atom was observed during the thermal ramping process. These behaviors indicate that a long-lived N (2Dlong) atom is generated in the VUV-photolyzed N2 ice. A comparison of the variations of the visible emission of N (2D) and the infrared absorption of l-N3 with time indicates that the long-lived N (2Dlong) dominated the thermal synthesis of l-N3. The results have enhanced suggestion and understanding of the conversion for nitrogen species in cold astrophysical environments with VUV irradiation.
Funder
Ministry of Science and Technology of Taiwan
NSRRC
Publisher
Proceedings of the National Academy of Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献