60Fe deposition during the late Pleistocene and the Holocene echoes past supernova activity

Author:

Wallner A.ORCID,Feige J.,Fifield L. K.,Froehlich M. B.ORCID,Golser R.,Hotchkis M. A. C.ORCID,Koll D.ORCID,Leckenby G.ORCID,Martschini M.ORCID,Merchel S.ORCID,Panjkov S.,Pavetich S.ORCID,Rugel G.ORCID,Tims S. G.ORCID

Abstract

Nuclides synthesized in massive stars are ejected into space via stellar winds and supernova explosions. The solar system (SS) moves through the interstellar medium and collects these nucleosynthesis products. One such product is60Fe, a radionuclide with a half-life of 2.6 My that is predominantly produced in massive stars and ejected in supernova explosions. Extraterrestrial60Fe has been found on Earth, suggesting close-by supernova explosions ∼2 to 3 and ∼6 Ma. Here, we report on the detection of a continuous interstellar60Fe influx on Earth over the past ∼33,000 y. This time period coincides with passage of our SS through such interstellar clouds, which have a significantly larger particle density compared to the local average interstellar medium embedding our SS for the past few million years. The interstellar60Fe was extracted from five deep-sea sediment samples and accelerator mass spectrometry was used for single-atom counting. The low number of 19 detected atoms indicates a continued but low influx of interstellar60Fe. The measured60Fe time profile over the 33 ky, obtained with a time resolution of about ±9 ky, does not seem to reflect any large changes in the interstellar particle density during Earth’s passage through local interstellar clouds, which could be expected if the local cloud represented an isolated remnant of the most recent supernova ejecta that traversed the Earth ∼2 to 3 Ma. The identified60Fe influx may signal a late echo of some million-year-old supernovae with the60Fe-bearing dust particles still permeating the interstellar medium.

Funder

Austrian Science Fund

Australian Research Council

Deutscher Akademischer Austauschdienst

European Cooperation in Science and Technology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3