Dynamical processes of interstitial diffusion in a two-dimensional colloidal crystal

Author:

Kim Sung-CheolORCID,Yu Lichao,Pertsinidis Alexandros,Ling Xinsheng Sean

Abstract

In two-dimensional (2D) solids, point defects, i.e., vacancies and interstitials, are bound states of topological defects of edge dislocations and disclinations. They are expected to play an important role in the thermodynamics of the system. Yet very little is known about the detailed dynamical processes of these defects. Two-dimensional colloidal crystals of submicrometer microspheres provide a convenient model solid system in which the microscopic dynamics of these defects can be studied in real time using video microscopy. Here we report a study of the dynamical processes of interstitials in a 2D colloidal crystal. The diffusion constants of both mono- and diinterstitials are measured and found to be significantly larger than those of vacancies. Diinterstitials are clearly slower than monointerstitials. We found that, by plotting the accumulative positions of five- and sevenfold disclinations relative to the center-of-mass position of the defect, a sixfold symmetric pattern emerges for monointerstitials. This is indicative of an equilibrium behavior that satisfies local detailed balance that the lattice remains elastic and can be thermally excited between lattice configurations reversibly. However, for diinterstitials the sixfold symmetry is not observed in the same time window, and the local lattice distortions are too severe to recover quickly. This observation suggests a possible route to creating local melting of a lattice (similarly one can create local melting by creating divacancies). This work opens up an avenue for microscopic studies of the dynamics of melting in colloidal model systems.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3