Neural progenitor cells mediated by H2A.Z.2 regulate microglial development via Cxcl14 in the embryonic brain

Author:

Li Zhongqiu,Li Yanxin,Jiao JianweiORCID

Abstract

Microglia, the resident immune cells of the central nervous system, play an important role in the brain. Microglia have a special spatiotemporal distribution during the development of the cerebral cortex. Neural progenitor cells (NPCs) are the main source of neural-specific cells in the early brain. It is unclear whether NPCs affect microglial development and what molecular mechanisms control early microglial localization. H2A.Z.2, a histone variant of H2A, has a key role in gene expression regulation, genomic stability, and chromatin remodeling, but its function in brain development is not fully understood. Here, we found that the specific deletion of H2A.Z.2 in neural progenitor cells led to an abnormal increase in microglia in the ventricular zone/subventricular zone (VZ/SVZ) of the embryonic cortex. Mechanistically, H2A.Z.2 regulated microglial development by incorporating G9a into the promoter region of Cxcl14 and promoted H3k9me2 modification to inhibit the transcription of Cxcl14 in neural progenitor cells. Meanwhile, we found that the deletion of H2A.Z.2 in microglia itself had no significant effect on microglial development in the early cerebral cortex. Our findings demonstrate a key role of H2A.Z.2 in neural progenitor cells in controlling microglial development and broaden our knowledge of 2 different types of cells that may affect each other through crosstalk in the central nervous system.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference59 articles.

1. On place and time: microglia in embryonic and perinatal brain development

2. Microglia in CNS development: Shaping the brain for the future;Mosser;Prog. Neurobiol.,2017

3. [Roles of microglia in neurodegenerative diseases];Yamanaka;Brain Nerve,2017

4. Microglia in health and disease;Ransohoff;Cold Spring Harb. Perspect. Biol.,2015

5. Microglia: Multitasking Specialists of the Brain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3