A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate

Author:

Yoshioka HiromasaORCID,Coates Hudson W.,Chua Ngee Kiat,Hashimoto Yuichi,Brown Andrew J.,Ohgane KenjiORCID

Abstract

Cholesterol biosynthesis is a high-cost process and, therefore, tightly regulated by both transcriptional and posttranslational negative feedback mechanisms in response to the level of cellular cholesterol. Squalene monooxygenase (SM, also known as squalene epoxidase or SQLE) is a rate-limiting enzyme in the cholesterol biosynthetic pathway and catalyzes epoxidation of squalene. The stability of SM is negatively regulated by cholesterol via its N-terminal regulatory domain (SM-N100). In this study, using a SM-luciferase fusion reporter cell line, we performed a chemical genetics screen that identified inhibitors of SM itself as up-regulators of SM. This effect was mediated through the SM-N100 region, competed with cholesterol-accelerated degradation, and required the E3 ubiquitin ligase MARCH6. However, up-regulation was not observed with statins, well-established cholesterol biosynthesis inhibitors, and this pointed to the presence of another mechanism other than reduced cholesterol synthesis. Further analyses revealed that squalene accumulation upon treatment with the SM inhibitor was responsible for the up-regulatory effect. Using photoaffinity labeling, we demonstrated that squalene directly bound to the N100 region, thereby reducing interaction with and ubiquitination by MARCH6. Our findings suggest that SM senses squalene via its N100 domain to increase its metabolic capacity, highlighting squalene as a feedforward factor for the cholesterol biosynthetic pathway.

Funder

MEXT | Japan Society for the Promotion of Science

Australian Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3