Wild hummingbirds discriminate nonspectral colors

Author:

Stoddard Mary CaswellORCID,Eyster Harold N.ORCID,Hogan Benedict G.ORCID,Morris Dylan H.ORCID,Soucy Edward R.ORCID,Inouye David W.ORCID

Abstract

Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds’ extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.

Funder

David and Lucile Packard Foundation

Princeton University

Princeton Environmental Institute, Princeton University

Alfred P. Sloan Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring honey bee feeding rhythms with the BeeBox, a platform for nectar foraging insects;Physiology & Behavior;2024-09

2. Theory of Human Tetrachromatic Color Experience and Printing;ACM Transactions on Graphics;2024-07-19

3. Hue selectivity from recurrent circuitry in Drosophila;Nature Neuroscience;2024-05-16

4. Ultraviolet vision in anemonefish improves colour discrimination;Journal of Experimental Biology;2024-04-01

5. Geometric design of antireflective leafhopper brochosomes;Proceedings of the National Academy of Sciences;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3