Abstract
Soil mixing over long (>102 y) timescales enhances nutrient fluxes that support soil ecology, contributes to dispersion of sediment and contaminated material, and modulates fluxes of carbon through Earth’s largest terrestrial carbon reservoir. Despite its foundational importance, we lack robust understanding of the rates and patterns of soil mixing, largely due to a lack of long-timescale data. Here we demonstrate that luminescence, a light-sensitive property of minerals used for geologic dating, can be used as a long-timescale sediment tracer in soils to reveal the structure of soil mixing. We develop a probabilistic model of transport and mixing of tracer particles and associated luminescence in soils and compare with a global compilation of luminescence versus depth in various locations. The model–data comparison reveals that soil mixing rate varies over the soil depth, with this depth dependency persisting across climate and ecological zones. The depth dependency is consistent with a model in which mixing intensity decreases linearly or exponentially with depth, although our data do not resolve between these cases. Our findings support the long-suspected idea that depth-dependent mixing is a spatially and temporally persistent feature of soils. Evidence for a climate control on the patterns and intensities of soil mixing with depth remains elusive and requires the further study of soil mixing processes.
Funder
ACS | American Chemical Society Petroleum Research Fund
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献