Hybridization increases population variation during adaptive radiation

Author:

Grant Peter R.ORCID,Grant B. Rosemary

Abstract

Adaptive radiations are prominent components of the world’s biodiversity. They comprise many species derived from one or a small number of ancestral species in a geologically short time that have diversified into a variety of ecological niches. Several authors have proposed that introgressive hybridization has been important in the generation of new morphologies and even new species, but how that happens throughout evolutionary history is not known. Interspecific gene exchange is expected to have greatest impact on variation if it occurs after species have diverged genetically and phenotypically but before genetic incompatibilities arise. We use a dated phylogeny to infer that populations of Darwin’s finches in the Galápagos became more variable in morphological traits through time, consistent with the hybridization hypothesis, and then declined in variation after reaching a peak. Some species vary substantially more than others. Phylogenetic inferences of hybridization are supported by field observations of contemporary hybridization. Morphological effects of hybridization have been investigated on the small island of Daphne Major by documenting changes in hybridizing populations ofGeospiza fortisandGeospiza scandensover a 30-y period.G. scandensshowed more evidence of admixture thanG. fortis. Beaks ofG. scandensbecame progressively blunter, and while variation in length increased, variation in depth decreased. These changes imply independent effects of introgression on 2, genetically correlated, beak dimensions. Our study shows how introgressive hybridization can alter ecologically important traits, increase morphological variation as a radiation proceeds, and enhance the potential for future evolution in changing environments.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference109 articles.

1. Hybridization as a Source of Variation for Adaptation to New Environments

2. G. Svärdson , “Significance of introgression in coregonid evolution” in Biology of Coregonid Fishes, C. C. Lindsey , C. S. Woods , Eds. (University of Manitoba Press, Winnipeg, 1970), pp. 39–59.

3. Hybridization and speciation

4. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature;Taylor;Nat. Ecol. Evol.,2019

5. Phenotypic and Genetic Effects of Hybridization in Darwin's Finches

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3