Unraveling the iterative type I polyketide synthases hidden in Streptomyces

Author:

Wang BinORCID,Guo FangORCID,Huang ChunshuaiORCID,Zhao HuiminORCID

Abstract

Type I polyketide synthases (T1PKSs) are one of the most extensively studied PKSs, which can act either iteratively or via an assembly-line mechanism. Domains in the T1PKSs can readily be predicted by computational tools based on their highly conserved sequences. However, to distinguish between iterative and noniterative at the module level remains an overwhelming challenge, which may account for the seemingly biased distribution of T1PKSs in fungi and bacteria: small iterative monomodular T1PKSs that are responsible for the enormously diverse fungal natural products exist almost exclusively in fungi. Here we report the discovery of iterative T1PKSs that are unexpectedly both abundant and widespread in Streptomyces. Seven of 11 systematically selected T1PKS monomodules from monomodular T1PKS biosynthetic gene clusters (BGCs) were experimentally confirmed to be iteratively acting, synthesizing diverse branched/nonbranched linear intermediates, and two of them produced bioactive allenic polyketides and citreodiols as end products, respectively. This study indicates the huge potential of iterative T1PKS BGCs from streptomycetes in the discovery of novel polyketides.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3