Abstract
Changes in plant phenology associated with climate change have been observed globally. What is poorly known is whether and how phenological responses to climate warming will differ from year to year, season to season, habitat to habitat, or species to species. Here, we present 5 y of phenological responses to experimental warming for 10 subboreal tree species. Research took place in the open-air B4WarmED experiment in Minnesota. The design is a two habitat (understory and open) × three warming treatments (ambient, +1.7 °C, +3.4 °C) factorial at two sites. Phenology was measured twice weekly during the growing seasons of 2009 through 2013. We found significant interannual variation in the effect of warming and differences among species in response to warming that relate to geographic origin and plant functional group. Moreover, responses to experimental temperature variation were similar to responses to natural temperature variation. Warming advanced the date of budburst more in early compared to late springs, suggesting that to simulate interannual variability in climate sensitivity of phenology, models should employ process-based or continuous development approaches. Differences among species in timing of budburst were also greater in early compared to late springs. Our results suggest that climate change—which will make most springs relatively “early”—could lead to a future with more variable phenology among years and among species, with consequences including greater risk of inappropriately early leafing and altered interactions among species.
Funder
DOE | SC | Biological and Environmental Research
Minnesota Agricultural Experiment Station
Publisher
Proceedings of the National Academy of Sciences
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献