Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B

Author:

Sugiura Kazunori,Mihara Shoko,Fu Nae,Hisabori ToruORCID

Abstract

The intracellular redox state is one of the key factors regulating various physiological phenomena in the cell. Monitoring this state is therefore important for understanding physiological homeostasis in cells. Various fluorescent sensor proteins have already been developed to monitor intracellular redox state. We also developed fluorescent redox sensor proteins named Oba-Q and Re-Q, the emissions of which are quenched under oxidized and reduced conditions, respectively. Although these sensors were useful to visualize the redox changes in the cell over time, they have the weakness that their emission signals are directly influenced by their in situ expression levels. To overcome this problem, we developed a redox sensor protein with a single excitation peak and dual variable emission peaks. This sensor protein shows green emission under oxidized conditions and blue emission under reduced conditions. We therefore named this sensor FROG/B, fluorescent protein with redox-dependent change in green/blue. By using this sensor, we successfully measured the changes in intracellular redox potentials in cyanobacterial cells quantitatively caused by light/dark transition just by calculating the ratio of emission between green and blue signals.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3