Deep learning predicts path-dependent plasticity

Author:

Mozaffar M.,Bostanabad R.,Chen W.,Ehmann K.,Cao J.,Bessa M. A.ORCID

Abstract

Plasticity theory aims at describing the yield loci and work hardening of a material under general deformation states. Most of its complexity arises from the nontrivial dependence of the yield loci on the complete strain history of a material and its microstructure. This motivated 3 ingenious simplifications that underpinned a century of developments in this field: 1) yield criteria describing yield loci location; 2) associative or nonassociative flow rules defining the direction of plastic flow; and 3) effective stress–strain laws consistent with the plastic work equivalence principle. However, 2 key complications arise from these simplifications. First, finding equations that describe these 3 assumptions for materials with complex microstructures is not trivial. Second, yield surface evolution needs to be traced iteratively, i.e., through a return mapping algorithm. Here, we show that these assumptions are not needed in the context of sequence learning when using recurrent neural networks, diverting the above-mentioned complications. This work offers an alternative to currently established plasticity formulations by providing the foundations for finding history- and microstructure-dependent constitutive models through deep learning.

Funder

Cyber-Physical Systems

DOD | USAF | AFMC | Air Force Office of Scientific Research

U.S. Department of Commerce

DOC | National Institute of Standards and Technology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference31 articles.

1. Understanding scaling through history-dependent processes with collapsing sample space

2. Mechanik der festen Körper im plastisch-deformablen Zustand [in German];Mises;Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse,1913

3. P. J. Armstrong , C. O. Frederick , A Mathematical Representation of the Multiaxial Bauschinger Effect (Tech. Rep. RD/B/N731, Central Electricity Generating Board [and] Berkeley Nuclear Laboratories, Research & Development Department, 1966), vol. 731.

4. Improving the accuracy of double-sided incremental forming simulations by considering kinematic hardening and machine compliance;Leem;Procedia Manuf.,2019

5. On some modifications of kinematic hardening to improve the description of ratchetting effects

Cited by 337 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3