Author:
Li Lunyi,Guo Xingdong,Shi Xiaoshan,Li Changting,Wu Wei,Yan Chengsong,Wang Haopeng,Li Hua,Xu Chenqi
Abstract
Antigen-triggered T-cell receptor (TCR) phosphorylation is the first signaling event in T cells to elicit adaptive immunity against invading pathogens and tumor cells. Despite its physiological importance, the underlying mechanism of TCR phosphorylation remains elusive. Here, we report a key mechanism regulating the initiation of TCR phosphorylation. The major TCR kinase Lck shows high selectivity on the four CD3 signaling proteins of TCR. CD3ε is the only CD3 chain that can efficiently interact with Lck, mainly through the ionic interactions between CD3ε basic residue-rich sequence (BRS) and acidic residues in the Unique domain of Lck. We applied a TCR reconstitution system to explicitly study the initiation of TCR phosphorylation. The ionic CD3ε−Lck interaction controls the phosphorylation level of the whole TCR upon antigen stimulation. CD3ε BRS is sequestered in the membrane, and antigen stimulation can unlock this motif. Dynamic opening of CD3ε BRS and its subsequent recruitment of Lck thus can serve as an important switch of the initiation of TCR phosphorylation.
Funder
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献