Abstract
Stochastic thermodynamics extends classical thermodynamics to small systems in contact with one or more heat baths. It can account for the effects of thermal fluctuations and describe systems far from thermodynamic equilibrium. A basic assumption is that the expression for Shannon entropy is the appropriate description for the entropy of a nonequilibrium system in such a setting. Here we measure experimentally this function in a system that is in local but not global equilibrium. Our system is a micron-scale colloidal particle in water, in a virtual double-well potential created by a feedback trap. We measure the work to erase a fraction of a bit of information and show that it is bounded by the Shannon entropy for a two-state system. Further, by measuring directly the reversibility of slow protocols, we can distinguish unambiguously between protocols that can and cannot reach the expected thermodynamic bounds.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Agence Nationale de la Recherche
Publisher
Proceedings of the National Academy of Sciences
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献