Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data

Author:

Schuemie Martijn J.ORCID,Hripcsak George,Ryan Patrick B.,Madigan David,Suchard Marc A.

Abstract

Observational healthcare data, such as electronic health records and administrative claims, offer potential to estimate effects of medical products at scale. Observational studies have often been found to be nonreproducible, however, generating conflicting results even when using the same database to answer the same question. One source of discrepancies is error, both random caused by sampling variability and systematic (for example, because of confounding, selection bias, and measurement error). Only random error is typically quantified but converges to zero as databases become larger, whereas systematic error persists independent from sample size and therefore, increases in relative importance. Negative controls are exposure–outcome pairs, where one believes no causal effect exists; they can be used to detect multiple sources of systematic error, but interpreting their results is not always straightforward. Previously, we have shown that an empirical null distribution can be derived from a sample of negative controls and used to calibrate P values, accounting for both random and systematic error. Here, we extend this work to calibration of confidence intervals (CIs). CIs require positive controls, which we synthesize by modifying negative controls. We show that our CI calibration restores nominal characteristics, such as 95% coverage of the true effect size by the 95% CI. We furthermore show that CI calibration reduces disagreement in replications of two pairs of conflicting observational studies: one related to dabigatran, warfarin, and gastrointestinal bleeding and one related to selective serotonin reuptake inhibitors and upper gastrointestinal bleeding. We recommend CI calibration to improve reproducibility of observational studies.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3