Direct observation of structure and dynamics during phase separation of an elastomeric protein

Author:

Reichheld Sean E.,Muiznieks Lisa D.,Keeley Fred W.,Sharpe Simon

Abstract

Despite its growing importance in biology and in biomaterials development, liquid–liquid phase separation of proteins remains poorly understood. In particular, the molecular mechanisms underlying simple coacervation of proteins, such as the extracellular matrix protein elastin, have not been reported. Coacervation of the elastin monomer, tropoelastin, in response to heat and salt is a critical step in the assembly of elastic fibers in vivo, preceding chemical cross-linking. Elastin-like polypeptides (ELPs) derived from the tropoelastin sequence have been shown to undergo a similar phase separation, allowing formation of biomaterials that closely mimic the material properties of native elastin. We have used NMR spectroscopy to obtain site-specific structure and dynamics of a self-assembling elastin-like polypeptide along its entire self-assembly pathway, from monomer through coacervation and into a cross-linked elastic material. Our data reveal that elastin-like hydrophobic domains are composed of transient β-turns in a highly dynamic and disordered chain, and that this disorder is retained both after phase separation and in elastic materials. Cross-linking domains are also highly disordered in monomeric and coacervated ELP3 and form stable helices only after chemical cross-linking. Detailed structural analysis combined with dynamic measurements from NMR relaxation and diffusion data provides direct evidence for an entropy-driven mechanism of simple coacervation of a protein in which transient and nonspecific intermolecular hydrophobic contacts are formed by disordered chains, whereas bulk water and salt are excluded.

Funder

Heart and Stroke Foundation of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3