Single-stranded nucleic acid elasticity arises from internal electrostatic tension

Author:

Jacobson David R.,McIntosh Dustin B.,Stevens Mark J.,Rubinstein Michael,Saleh Omar A.ORCID

Abstract

Understanding of the conformational ensemble of flexible polyelectrolytes, such as single-stranded nucleic acids (ssNAs), is complicated by the interplay of chain backbone entropy and salt-dependent electrostatic repulsions. Molecular elasticity measurements are sensitive probes of the statistical conformation of polymers and have elucidated ssNA conformation at low force, where electrostatic repulsion leads to a strong excluded volume effect, and at high force, where details of the backbone structure become important. Here, we report measurements of ssDNA and ssRNA elasticity in the intermediate-force regime, corresponding to 5- to 100-pN forces and 50–85% extension. These data are explained by a modified wormlike chain model incorporating an internal electrostatic tension. Fits to the elastic data show that the internal tension decreases with salt, from >5 pN under 5 mM ionic strength to near zero at 1 M. This decrease is quantitatively described by an analytical model of electrostatic screening that ascribes to the polymer an effective charge density that is independent of force and salt. Our results thus connect microscopic chain physics to elasticity and structure at intermediate scales and provide a framework for understanding flexible polyelectrolyte elasticity across a broad range of relative extensions.

Funder

National Science Foundation

HHS | National Institutes of Health

Cystic Fibrosis Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3