Ensemble modeling informs hypoxia management in the northern Gulf of Mexico

Author:

Scavia DonaldORCID,Bertani Isabella,Obenour Daniel R.,Turner R. Eugene,Forrest David R.,Katin Alexey

Abstract

A large region of low-dissolved-oxygen bottom waters (hypoxia) forms nearly every summer in the northern Gulf of Mexico because of nutrient inputs from the Mississippi River Basin and water column stratification. Policymakers developed goals to reduce the area of hypoxic extent because of its ecological, economic, and commercial fisheries impacts. However, the goals remain elusive after 30 y of research and monitoring and 15 y of goal-setting and assessment because there has been little change in river nitrogen concentrations. An intergovernmental Task Force recently extended to 2035 the deadline for achieving the goal of a 5,000-km2 5-y average hypoxic zone and set an interim load target of a 20% reduction of the spring nitrogen loading from the Mississippi River by 2025 as part of their adaptive management process. The Task Force has asked modelers to reassess the loading reduction required to achieve the 2035 goal and to determine the effect of the 20% interim load reduction. Here, we address both questions using a probabilistic ensemble of four substantially different hypoxia models. Our results indicate that, under typical weather conditions, a 59% reduction in Mississippi River nitrogen load is required to reduce hypoxic area to 5,000 km2. The interim goal of a 20% load reduction is expected to produce an 18% reduction in hypoxic area over the long term. However, due to substantial interannual variability, a 25% load reduction is required before there is 95% certainty of observing any hypoxic area reduction between consecutive 5-y assessment periods.

Funder

DOC | National Oceanic and Atmospheric Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference87 articles.

1. LUMCON (2017) Hypoxia in the Northern Gulf of Mexico. Available at: www.gulfhypoxia.net/Research/. Accessed March 8, 2017.

2. Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”

3. Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River

4. Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia

5. US Environmental Protection Agency (2007) Hypoxia in the Northern Gulf of Mexico: An update by the EPA Science Advisory Board (Environmental Protection Agency, Washington, DC), Technical Report EPA-SAB-08-003. Available at https://yosemite.epa.gov/sab/SABPRODUCT.NSF/C3D2F27094E03F90852573B800601D93/$File/EPA-SAB-08-003complete.unsigned.pdf. Accessed February 2, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3