M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment

Author:

Lezmy Jonathan,Lipinsky Maya,Khrapunsky Yana,Patrich Eti,Shalom Lia,Peretz Asher,Fleidervish Ilya A.,Attali Bernard

Abstract

Alterations in synaptic input, persisting for hours to days, elicit homeostatic plastic changes in the axon initial segment (AIS), which is pivotal for spike generation. Here, in hippocampal pyramidal neurons of both primary cultures and slices, we triggered a unique form of AIS plasticity by selectively targeting M-type K+ channels, which predominantly localize to the AIS and are essential for tuning neuronal excitability. While acute M-current inhibition via cholinergic activation or direct channel block made neurons more excitable, minutes to hours of sustained M-current depression resulted in a gradual reduction in intrinsic excitability. Dual soma–axon patch-clamp recordings combined with axonal Na+ imaging and immunocytochemistry revealed that these compensatory alterations were associated with a distal shift of the spike trigger zone and distal relocation of FGF14, Na+, and Kv7 channels but not ankyrin G. The concomitant distal redistribution of FGF14 together with Nav and Kv7 segments along the AIS suggests that these channels relocate as a structural and functional unit. These fast homeostatic changes were independent of l-type Ca2+ channel activity but were contingent on the crucial AIS protein, protein kinase CK2. Using compartmental simulations, we examined the effects of varying the AIS position relative to the soma and found that AIS distal relocation of both Nav and Kv7 channels elicited a decrease in neuronal excitability. Thus, alterations in M-channel activity rapidly trigger unique AIS plasticity to stabilize network excitability.

Funder

Israel Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3