Temporal–prefrontal cortical network for discrimination of valuable objects in long-term memory

Author:

Ghazizadeh AliORCID,Griggs WhitneyORCID,Leopold David A.,Hikosaka Okihide

Abstract

Remembering and discriminating objects based on their previously learned values are essential for goal-directed behaviors. While the cerebral cortex is known to contribute to object recognition, surprisingly little is known about its role in retaining long-term object–value associations. To address this question, we trained macaques to arbitrarily associate small or large rewards with many random fractal objects (>100) and then used fMRI to study the long-term retention of value-based response selectivity across the brain. We found a pronounced long-term value memory in core subregions of temporal and prefrontal cortex where, several months after training, fractals previously associated with high reward (“good” stimuli) elicited elevated fMRI responses compared with those associated with low reward (“bad” stimuli). Similar long-term value-based modulation was also observed in subregions of the striatum, amygdala, and claustrum, but not in the hippocampus. The value-modulated temporal–prefrontal subregions showed strong resting-state functional connectivity to each other. Moreover, for areas outside this core, the magnitude of long-term value responses was predicted by the strength of resting-state functional connectivity to the core subregions. In separate testing, free-viewing gaze behavior indicated that the monkeys retained stable long-term memory of object value. These results suggest an implicit and high-capacity memory mechanism in the temporal–prefrontal circuitry and its associated subcortical regions for long-term retention of object-value memories that can guide value-oriented behavior.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference90 articles.

1. Pavlov IP Anrep GV (2003) Conditioned Reflexes (Courier Corp. North Chelmsford, MA).

2. Skinner B (1938) The Behavior of Organisms (Appleton-Century-Crofts, New York).

3. Simultaneous and successive visual discrimination by monkeys with inferotemporal lesions.

4. Invertebrate Learning and Memory: From Behavior to Molecules

5. Orbitofrontal cortex neurons: Role in olfactory and visual association learning;Rolls;J Neurophysiol,1996

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3