Evolutionary steps involving counterion displacement in a tunicate opsin

Author:

Kojima Keiichi,Yamashita Takahiro,Imamoto Yasushi,Kusakabe Takehiro G.,Tsuda Motoyuki,Shichida Yoshinori

Abstract

Ci-opsin1 is a visible light-sensitive opsin present in the larval ocellus of an ascidian, Ciona intestinalis. This invertebrate opsin belongs to the vertebrate visual and nonvisual opsin groups in the opsin phylogenetic tree. Ci-opsin1 contains candidate counterions (glutamic acid residues) at positions 113 and 181; the former is a newly acquired position in the vertebrate visual opsin lineage, whereas the latter is an ancestral position widely conserved among invertebrate opsins. Here, we show that Glu113 and Glu181 in Ci-opsin1 act synergistically as counterions, which imparts molecular properties to Ci-opsin1 intermediate between those of vertebrate- and invertebrate-type opsins. Synergy between the counterions in Ci-opsin1 was demonstrated by E113Q and E181Q mutants that exhibit a pH-dependent spectral shift, whereas only the E113Q mutation in vertebrate rhodopsin yields this spectral shift. On absorbing light, Ci-opsin1 forms an equilibrium between two intermediates with protonated and deprotonated Schiff bases, namely the MI-like and MII-like intermediates, respectively. Adding G protein caused the equilibrium to shift toward the MI-like intermediate, indicating that Ci-opsin1 has a protonated Schiff base in its active state, like invertebrate-type opsins. Ci-opsin1’s G protein activation efficiency is between the efficiencies of vertebrate- and invertebrate-type opsins. Interestingly, the E113Y and E181S mutations change the molecular properties of Ci-opsin1 into those resembling invertebrate-type or bistable opsins and vertebrate ancient/vertebrate ancient-long or monostable opsins, respectively. These results strongly suggest that acquisition of counterion Glu113 changed the molecular properties of visual opsin in a vertebrate/tunicate common ancestor as a crucial step in the evolution of vertebrate visual opsins.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3