Author:
Katz David C.,Grote Mark N.,Weaver Timothy D.
Abstract
Agricultural foods and technologies are thought to have eased the mechanical demands of diet—how often or how hard one had to chew—in human populations worldwide. Some evidence suggests correspondingly worldwide changes in skull shape and form across the agricultural transition, although these changes have proved difficult to characterize at a global scale. Here, adapting a quantitative genetics mixed model for complex phenotypes, we quantify the influence of diet on global human skull shape and form. We detect modest directional differences between foragers and farmers. The effects are consistent with softer diets in preindustrial farming groups and are most pronounced and reliably directional when the farming class is limited to dairying populations. Diet effect magnitudes are relatively small, affirming the primary role of neutral evolutionary processes—genetic drift, mutation, and gene flow structured by population history and migrations—in shaping diversity in the human skull. The results also bring an additional perspective to the paradox of why Homo sapiens, particularly agriculturalists, appear to be relatively well suited to efficient (high-leverage) chewing.
Funder
National Science Foundation
Wenner-Gren Foundation
American Museum of Natural History
Publisher
Proceedings of the National Academy of Sciences
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献