Understanding the ant’s unique biting system can improve surgical needle holders

Author:

Wipfler Benjamin1,Hoepfner Ole2ORCID,Viebahn Felix34ORCID,Weihmann Tom5ORCID,Rieg Frank3,Engelmann Carsten2ORCID

Affiliation:

1. Morphology Laboratory, Leibniz Institute for the Analysis of the Biodiversity Change, 53113 Bonn, Germany

2. Department of Pediatric Surgery, Theodor Fontane Medical School, University Hospital Brandenburg an der Havel, 14770 Brandenburg, Germany

3. Lehrstuhl für Konstruktionslehre und CAD, University of Bayreuth, 95440 Bayreuth, Germany

4. Department of Mechanical Engineering, ZF Group, 97424 Schweinfurt, Germany

5. Department of Animal Physiology, University of Rostock, 18059 Rostock, Germany

Abstract

Mechanical grasping and holding devices depend upon a firm and controlled grip. The possibility to improve this gripping performance is severely limited by the need for miniaturization in many applications, such as robotics, microassembly, or surgery. In this paper, we show how this gripping can be improved in one application (the endoscopic needle holder) by understanding and imitating the design principles that evolution has selected to make the mandibles of an ant a powerful natural gripping device. State-of-the-art kinematic, morphological, and engineering approaches show that the ant, in contrast to other insects, has considerable movement within the articulation and the jaw´s rotational axis. We derived three major evolutionary design principles from the ant’s biting apparatus: 1) a mobile joint axis, 2) a tilted orientation of the mandibular axis, and 3) force transmission of the adductor muscle to the tip of the mandible. Application of these three principles to a commercially available endoscopic needle holder resulted in calculated force amplification up to 296% and an experimentally measured one up to 433%. This reduced the amount of translations and rotations of the needle, compared to the needle’s original design, while retaining its size or outer shape. This study serves as just one example showing how bioengineers might find elegant solutions to their design problems by closely observing the natural world.

Funder

Stiftung-Oskar-Helene-Heim

B. Braun-Stiftung

Daimler und Benz Stiftung

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3